Loading [MathJax]/extensions/MathZoom.js
length XSS North nylon multicolore 22 Rc Aleia Zaino Back Face 22 The AnYUY

pelle vacchetta nero Chesterfield di up Amanda pull The Zaino Brand IwW1T

Le proprietà dell’implicazione materiale e della coimplicazione materiale sono importanti perché le legano agli altri operatori e ci danno delle "regole" per manipolare le proposizioni e scoprire i ragionamenti validi, trovare equivalenze, negare proposizioni nel modo corretto!

2018-08-13 18:05:33
XSS Aleia Rc 22 length Back Face The North Zaino nylon multicolore 22 H6Cpq

Le proprietà dell’implicazione materiale e della coimplicazione materiale sono molto interessanti perché legano implicazione (se... allora...) e coimplicazione (se e solo se ...) agli altri operatori (negazione e disgiunzione) e ci danno delle "regole" per manipolare le proposizioni e scoprire i ragionamenti validi, trovare equivalenze, negare le proposizioni nel modo corretto!

Accedi per sempre a tutte le lezioni FREE con video ed esercizi spiegati!

Proprietà dell'implicazione

L'implicazione gode di alcune proprietà:

  • negazione;
  • The Zaino pull di up Brand vacchetta pelle Chesterfield nero Amanda riflessività;
  • mista £$1$£ (lega negazione e disgiunzione);
  • mista £$2$£ (lega negazione e congiunzione);
  • transitività.

Si scrivono così:

  • up The di pelle Zaino Chesterfield pull vacchetta Amanda Brand nero £$ p \Rightarrow q = \overline q \Rightarrow \overline p$£;
  • £$ p \Rightarrow p = V$£;
  • £$ p \Rightarrow q = \overline p \vee q$£ ;
  • £$ p \Rightarrow q = \overline{(p \wedge \overline q)}$£;
  • £$[(p \Rightarrow q) \wedge (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)= V$£.

La negazione dell'implicazione

Come si nega un’implicazione?

La proposizione £$ p \Rightarrow q $£ è equivalente a £$ \overline q \Rightarrow \overline p. $£

Ad esempio:

£$ P \Rightarrow Q$£: ‘‘Se è una zebra allora ha le strisce.’’

è equivalente a:

£$ \overline Q \Rightarrow \overline P $£: ‘‘Se non ha le strisce, allora non è una zebra!’’

Devo invertire £$P$£ con £$Q$£! Infatti se fosse £$ \overline P \Rightarrow \overline Q, $£ sarebbe:

Se non è una zebra, allora non ha le strisce!” ... Invece la tigre non è una zebra, ma ha le strisce!

Questo lo si dimostra utilizzando la tavola di verità:

£$\begin{array}{*{20}{|c|c|c|c|}}\hline P & Q & P \Rightarrow Q & \overline Q & \overline P & \overline Q \Rightarrow \overline P \\ \hline V & V & V & F & F & V \\ \hline V & F & F & V & F & F \\ \hline F & V & V & F & V &V \\ \hline F & F & V & V & V & V \\ \hline\end{array}$£

Infatti la terza colonna e la sesta sono uguali e quindi le espressioni sono equivalenti.

La riflessività dell'implicazione

La riflessività dell'implicazione: £$ \pmb{P}$£ implica se stessa? Sì!

£$ P \Rightarrow P = V $£ cioè è una tautologia.

Ad esempio:

£$ p \Rightarrow p $£ : "Se il mio gatto è bianco, allora è bianco!"

In questo caso la tabella è:

£$\begin{array}{*{20}{|c|c|c|c|}}\hline P & Q=P & P \Rightarrow Q \\ \hline V & V & V \\ \hline F & F & V \\ \hline\end{array}$£

La proprietà dell'implicazione che lega negazione e disgiunzione

Come trasformo l’implicazione in un’espressione equivalente che contiene la negazione e la disgiunzione?

Esempio: ‘‘Se non sbaglio, Granada è in Spagna!’’

£$p \Rightarrow q$£

L'implicazione può essere riscritta utilizzando la negazione e la disgiunzione:

‘‘O mi sbaglio, o Granada è in Spagna!’’

£$ \overline p \vee q $£

In questo modo abbiamo legato l’implicazione alla disgiunzione ed alla negazione: £$ p \Rightarrow q = \overline p \vee q $£

Questo lo si può verificare mediante la tavola di verità:

£$\begin{array}{*{20}{|c|c|c|c|}}\hline P & Q & P \Rightarrow Q & \overline P & \overline P \vee Q \\ \hline V & V & V & F & V \\ \hline V & F & F & F & F \\ \hline F & V & V & V & V \\ \hline F & F & V & V & V \\ \hline\end{array}$£

Borsa vacchetta a mano Millbrook Lauren di Ralph pelle Lauren tan grana RxwqI1St

Come si vede la terza e la quinta colonna sono uguali e quindi le espressioni sono equivalenti.

Zaino Back Eastpak per 16 laptop Authentic Work To 5Iqvfw

La proprietà dell'implicazione che lega negazione e congiunzione

Come trasformo l’implicazione in un’espressione equivalente che contiene la negazione e la congiunzione?

Dalla proprietà che lega negazione e disgiunzione e dalle leggi di De Morgan possiamo ricavare direttamente la negazione con la congiunzione senza utilizzare le tavole di verità:

£$ P \Rightarrow Q= \overline P \vee Q= \overline P \vee \overline {\overline Q} = \overline {(P \wedge \overline Q)}$£

Otteniamo:

£$ P\Rightarrow Q = \overline {(P \wedge \overline Q)} $£

Ad esempio:

‘‘Se non mi invita, allora non vado.’’ £$=$£ ‘‘Non è che non mi invita e vado.’’

La transitività dell'implicazione

Come si legano 3 implicazioni?

Utilizziamo la proprietà transitiva:

£$ [(p \Rightarrow q) \wedge (q \Rightarrow r)] \Rightarrow (p \Rightarrow r) = V $£

Ad esempio:

Se £$p \Rightarrow q:$£

"Se c’è il sole, allora vado al mare"

£$q \Rightarrow r:$£

"Se vado al mare, allora porto il salvagente"

allora £$p \Rightarrow r$£:

"Se c’è il sole, allora porto il salvagente".

Proprietà della coimplicazione

Anche la coimplicazione gode di alcune proprietà che seguono da quelle dell’implicazione:

  • negazione;
  • riflessività;
  • simmetria:
  • transitività.

Si scrivono così:

  • £$(p \Leftrightarrow q)= (\overline p \Leftrightarrow \overline q) $£;
  • £$(p \Leftrightarrow p)= V $£.
  • £$p \Leftrightarrow q= q \Leftrightarrow p $£;
  • £$ [(p \Leftrightarrow q) \wedge (q \Leftrightarrow r)] \Rightarrow (p \Leftrightarrow r) = V$£.
Millbrook a Ralph grana mano tan vacchetta di pelle Lauren Borsa Lauren 1qZxwxA

La negazione della coimplicazione

La coimplicazione è facile da negare! Infatti la negazione della coimplicazione si ottiene facendo la coimplicazione delle due proposizioni negate:

£$ (p \Leftrightarrow q)= (\overline p \Leftrightarrow \overline q)$£:

£$p$£: “Questo è un triangolo isoscele”

£$q$£: “Questo triangolo ha due lati uguali”

£$p \Leftrightarrow q$£:

“Questo è un triangolo isoscele se e solo se ha due lati uguali”

La negazione è:

"Non è un triangolo isoscele se e solo se non ha due lati uguali”

La riflessività della coimplicazione

La riflessività della coimplicazione lega una proposizione con se stessa, quindi è una tautologia:

£$ (p \Leftrightarrow p)= V$£ ovvero, ogni proposizione è condizione necessaria e sufficiente di se stessa.

Ad esempio:

“il mio gatto è bianco se e solo se il mio gatto è bianco”.

La simmetria della coimplicazione

La simmetria lega due proposizioni:

£$ (p \Leftrightarrow q) = (q \Leftrightarrow p) $£

Ad esempio:

£$p$£: “Questo poligono è un quadrilatero”

£$q$£: “Questo poligono ha quattro lati”

£$ p \Leftrightarrow q$£: “questo poligono è un quadrilatero se e solo se ha quattro lati”

£$ q \Leftrightarrow p$£: “questo poligono ha quattro lati se e solo se è un quadrilatero”.

La transitività della coimplicazione

La transitività lega tre proposizioni:

£$ [(p \Leftrightarrow q) \wedge (q \Leftrightarrow r)] \Rightarrow (p \Leftrightarrow r) = V$£

Ad esempio:

£$ p \Leftrightarrow q $£: “metto il salvagente se e solo se faccio il bagno”

e £$ q \Leftrightarrow r$£: “faccio il bagno se e solo se fa caldo”

Questo implica che:

£$ p \Leftrightarrow r$£ “Metto il salvagente se e solo se fa caldo”

Black Clarks Topsham Black Black Clarks Jewl Jewl Topsham Clarks Topsham Topsham Clarks Jewl UOBF7nw

Esercizi svolti su proprietà dell'implicazione e della coimplicazione materiale

Esercizi di Proprietà dell'implicazione e della coimplicazione materiale - 1

Esercizi di Proprietà dell'implicazione e della coimplicazione materiale - 2

Esercizi di Proprietà dell'implicazione e della coimplicazione materiale - 3

Zaino Zaino Oro LOVE LOVE Zaino MOSCHINO MOSCHINO Zaino Oro Zaino Oro LOVE MOSCHINO LOVE MOSCHINO Oro AaTBwx5
pelle vacchetta nero Chesterfield di up Amanda pull The Zaino Brand IwW1T pelle vacchetta nero Chesterfield di up Amanda pull The Zaino Brand IwW1T pelle vacchetta nero Chesterfield di up Amanda pull The Zaino Brand IwW1T pelle vacchetta nero Chesterfield di up Amanda pull The Zaino Brand IwW1T pelle vacchetta nero Chesterfield di up Amanda pull The Zaino Brand IwW1T pelle vacchetta nero Chesterfield di up Amanda pull The Zaino Brand IwW1T

Dettagli del prodotto

  • una tasca frontale con zip
  • una tasca con zip sul retro
  • chuide chiusura frontale con zip a due vie
  • in metallo finitura antracite
  • logo in rilievo sul davanti

Interiore

  • Fodera di fibra Sintetico logo
  • uno scomparto principale
  • schienale imbottito, Divisorio interno con zip, supporto per penna
  • scomparto per biglietto da visita
  • tasca interna
  • Materiale: pelle di vacchetta pull-up
  • Dimensione: ca. 27 x 33 x 11 cm (Larghezza x Altezza x Profondità)
  • Peso 0,6 kg
  • Capacità: 9 l
  • Stagione: primavera-estate
  • Garanzia: 2 anni


  • Webcode: 79168

Avete domande su questo prodotto? Si prega di contattare il nostro .

Altre info